Turbine Endwall Contouring Using a Hybrid Experimental and Numerical Optimization Approach

ANSYS Conference & 31st CADFEM Users' Meeting 2013

Sven Winkler

20.06.2013

Contents

Introduction

ITLR - University of Stuttgart

Project: Heat Transfer in 3D Vane Passages

Methodology

Optimization approach

Numerical optimization

Fluid Dynamics in Optimization

Results and Discussion

Optimization

Comparison with flat endwall

Conclusions

Institute of Aerospace Thermodynamics

Project description

Heat Transfer in 3D Vane Passages

Systematic Generation and Investigation of Contoured Vane-Endwall Geometries for Turbomachines Using the Ice Formation Method

Duration: July 2010 - December 2014

Joint Venture between German Research Foundation (DFG) and Research Association for Combustion Engines (FVV) in collaboration with ITLR

Project goal and background

Project goal: Generation of vane endwall contour which alters flow field in such way that endwall heat transfer is reduced

Flow features in vane row flow field after Takeishi et al. [2]

Clce Formation Method

- Natural optimization method
- Baseline geometry cooled below freezing temperature of water and exposed to convective water flow
- Resulting ice layer optimized with respect to minimum energy dissipation
- Method implies only minimum restrictions to optimization space

Pictures taken from [1]

Numerical optimization approach

- \blacksquare Goal function of IFM is minimum energy dissipation \rightarrow Trade-off between min. pressure loss and min. heat transfer
- Further numerical optimization with only minimum endwall heat transfer as goal function
- Genetic algorithm NSGA-II from Deb et al. [3] coupled with three-dimensional fluid dynamics
- $lue{}$ Parametrization of digitized ice layer with Bezier splines ightarrowSystematic variation of endwall contour geometry

Numerical optimization approach

Fluid dynamics in optimization

- Fluid dynamics simulations with ANSYS Fluent 12.1
- BC/IC set-up, simulation and evaluation scripted to run automatically in optimization \rightarrow Bash/Fluent command language

Solution domain and boundary conditions

Picture taken from [1]

- Steady state
- SIMPLE algorithm
- Fluid: air
- Compressible
- Sutherland's law

- Spatial discretization: 2nd order
- Turbulence: SST low-Reynoldsnumber-formulation
- Grid: \approx 4 M Cells; $y_1^+ \approx 1$
- Re = 49,900
- $\Delta T = T_{in} T_{EW} = 50K$

C Domain initialization

Initialization of domain with solution from flat endwall to save computation time \rightarrow Approx. 1000 iterations for convergence

Parameters numerical optimization

- Ice layer as initial endwall contour
- Goal function: Minimum endwall heat transfer
- 16 decision variables (control points of Bezier splines)
- Genetic Algorithm: Mutation probability $P_{\text{mut}} = 0.2$; Crossover probability $P_{\text{cross}} = 0.8$
- Simulation of 10 generations with 8 individuals per generation
 - \rightarrow total of 80 CFD simulations
- Simulation time: \approx 160h on 8 core i7 machine

Progress of goal function

Final endwall contour

- Main feature: Elevation in middle of vane passage with height maximum at rear suction side
- Stanton number reduction of 12.3% compared to baseline case (flat endwall); total pressure loss increased by 0.8%

Endwall heat transfer

- Heat transfer reduction in vane passage
- Heat transfer reduced downstream of trailing edges

Streamlines in vane passage

Contoured endwall

Flat endwall

- Flow guided closer to vane pressure side
- Turning of flow from pressure to suction side shifted towards exit of vane passage

Visualization of vortex cores

Contoured endwall

Flat endwall

- Turning of passage vortex delayed
- Passage vortex deflected towards next vane row

CConclusions

- Hybrid experimental and numerical optimization approach
- Numerical optimization combines three-dimensional CFD with genetic algorithm
- Novel endwall contour found which reduced Stanton number by 12.3%
- Turning of flow from pressure to suction side further downstream for contoured endwall than for flat endwall
- Passage vortex deflected towards next vane row for contoured endwall

References

- [1] Haase K., Winkler S., Weigand B., Neumann S.O. Turbine Endwall Contouring Using a Hybrid Experimental and Numerical Optimization Approach, Proceedings of the ASME 2012 International Mechanical Engineering Congress & Exposition. IMECE2012-87430
- [2] Takeishi K., Matsuura M., Aoki S. and Sato T., **An experimental study of heat transfer and film cooling on low aspect ratio turbine nozzles**, Journal of Turbomachinery, **112**(1), pp. 488-496, 1990
- [3] Deb K., Pratap A., Agarwal S., Meyarivan T., A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II, Vol. 6 of IEEE Transactions on Evolutionary Computation, 2002

Thanks for your attention! Questions welcome.

Definitions

Reynolds Number

$$Re_C = \frac{Cu_{\mathsf{ex}}}{\nu_{\infty}}$$

 $u_{\rm ex}$ - velocity at cascade exit

C - Vane chord length ν_{∞} - Kinmatic viscosity of incident flow

Area-averaged Stanton Number

$$\overline{St} = rac{\overline{q''}}{\Delta T c_p
ho u_{PE}}$$
 with $\overline{q''} = rac{\int_{A_{EW}} q'' dA_{EW}}{\int_{A_{EW}} dA_{EW}}$

 $\begin{array}{lllll} \overline{q''} & - & \text{Specific heat flux} & \rho & - & \text{Density} \\ \Delta T & - & \text{Temperature difference} & A_{EW} & - & \text{Area of endwall} \end{array}$

 c_p - Specific heat capacity

Pictures Test Section

